GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - M2 0981-01

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Mathematics M2 (June2017)

Markscheme

Q

1(a)(i) $\mathbf{v}=\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{r}$
M1 differentiation attempted Vector required
$\mathbf{v}=(\sin t+t \cos t) \mathbf{i}+(\cos t-t \sin t) \mathbf{j}$
A1
$\begin{aligned}(\bmod \mathbf{v})^{2}= & (\sin t+t \cos t)^{2}+(\cos t-t \sin t)^{2} \\ = & \sin ^{2} t+2 t \sin t \cos t+t^{2} \cos ^{2} t \\ & +\cos ^{2} t-2 t \sin t \cos t+t^{2} \sin ^{2} t \\ = & 1+t^{2}\end{aligned}$
Speed of $P=\sqrt{1+t^{2}}$

1(a)(ii) Momentum vector $=m \mathbf{v}$
$=3[(\sin t+t \cos t) \mathbf{i}+(\cos t-t \sin t) \mathbf{j}]$
$=3(\sin t+t \cos t) \mathbf{i}+3(\cos t-t \sin t) \mathbf{j}$

1(b) \quad At $t=\frac{\pi}{6}$,
$\mathbf{r}=\frac{\pi}{6} \sin \frac{\pi}{6} \mathbf{i}+\frac{\pi}{6} \cos \frac{\pi}{6} \mathbf{j}$
B1
$\mathbf{r}=\frac{\pi}{12} \mathbf{i}+\frac{\pi \sqrt{3}}{12} \mathbf{j}$
If perpendicular, $\mathbf{r} .(b \mathbf{i}+\sqrt{3} \mathbf{j})=0$
M1
$\left(\frac{\pi}{12} \mathbf{i}+\frac{\pi \sqrt{3}}{12} \mathbf{j}\right) .(b \mathbf{i}+\sqrt{3} \mathbf{j})$
$=\frac{\pi}{12} b+\frac{\pi \sqrt{3}}{12} \times \sqrt{3}$
$\frac{\pi}{12} b+\frac{3 \pi}{12}=0$
$b+3=0$
$b=\underline{-3}$
M1A1 method correct, no \mathbf{i}, \mathbf{j}

A1 cao

2(a) $x=\int 4 t^{3}-6 t+7 \mathrm{~d} t$
$x=t^{4}-3 t^{2}+7 t+(\mathrm{C})$
When $t=0, x=5$
$\mathrm{C}=5$
$x=t^{4}-3 t^{2}+7 t+5$
When $t=2$
$x=2^{4}-3 \times 2^{2}+7 \times 2+5$
$x=16-12+14+5$
$x=\underline{23(\mathrm{~m})}$

2(b) $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
$a=12 t^{2}-6$
$F=m a=0.8\left(12 t^{2}-6\right)$
When $t=3$
$F=0.8\left(12 \times 3^{2}-6\right)$
$F=\underline{81.6(\mathrm{~N})}$

Mark Notes

M1 at least one power increased.
A1 correct integration
m1 initial conditions used
m1 used

A1 cao

M1 at least one power decreased.
A1
M1 $\quad \mathrm{Ft} a$

A1 cao

3(a). $\quad T=\frac{P}{v}$
$T=\frac{12000}{3}=(4000)$
N2L
$T-m g \sin \alpha-R=m a$
$4000-3000 \times 9.8 \times 0.1-460=3000 a$ $a=\underline{0.2\left(\mathrm{~ms}^{-2}\right)}$

3(b) N2L
$a=0$
$T-10 v-m g \sin \alpha-R=0$
$\frac{12000}{v}-10 v-3000 \times 9.8 \times 0.1-460=0$
$\frac{12000}{v}-10 v-3400=0$
$12000-10 v^{2}-3400 v=0$
$v^{2}+340 v-1200=0$
$v=\frac{-340 \pm \sqrt{340^{2}+4 \times 1200}}{2}$
$v=\underline{3.49}$

B1

M1
Mark Notes

M1 dimensionally correct 4 terms, allow sin/cos
A1
A1 cao
dimensionally correct 4 terms, allow sin/cos

A1
m1 dep on both M
A1 cao answer rounding to 3.5.

4(a) initial vertical vel of $P=15 \sin 60^{\circ}$

$$
=\frac{15 \sqrt{3}}{2}=12.99
$$

initial vertical vel of $Q=v \sin 30^{\circ}$
use of $s=u t+0.5 g t^{2}$
height of P at time $t=\frac{15 \sqrt{3}}{2} t-0.5 g t^{2}$
height of Q at time $t=0.5 \mathrm{vt}-0.5 \mathrm{gt} t^{2}$
For collision

$$
\frac{15 \sqrt{3}}{2} t-0.5 g t^{2}=0.5 v t-0.5 g t^{2}
$$

$$
v=15 \sqrt{ } 3=25.98
$$

4(b) initial horiz vel of $P=15 \cos 60^{\circ}$

$$
=7.5
$$

initial horiz vel of $Q=15 \sqrt{ } 3 \cos 30^{\circ}$

$$
=22.5
$$

For collision,
$7.5 t+22.5 t=18$
M1
$t=0.6$ (s)

4(c) use of $v=u+a t, u=\frac{15 \sqrt{3}}{2}$ (c), $a= \pm 9.8, t=0.6$
$v=\frac{15 \sqrt{3}}{2}-9.8 \times 0.6$
$v=7.1$

$$
\begin{aligned}
\text { speed } & =\sqrt{7.1^{2}+7.5^{2}} \\
& =\underline{10.3\left(\mathrm{~ms}^{-1}\right)}
\end{aligned}
$$

M1

A1 either
B1 either correct expression
m1

A1 accept 26
,

KE at $t=0=0.5 \times 4000 \times 2^{2}$
KE at $t=0=8000$ (J)
PE at $t=0=0$
KE at $t=8=0.5 \times 4000 \times 5^{2}$
KE at $t=8=50000(\mathrm{~J})$
PE at $t=8=4000 \times 9.8 \times h$
PE at $t=8=4000 \times 9.8 \times 30 \sin \alpha$
PE at $t=8=58800(\mathrm{~J})$
WD by engine $=43000 \times 8$
WD by engine $=344000(\mathrm{~J})$
Work-energy principle
$8000+344000=\mathrm{WD}+50000+58800$
$\mathrm{WD}=\underline{243200(\mathrm{~J})}$

M1
A1
M1A1 $v=2$ or 5

B1

M1
A1
A1
KE, PE and $\mathrm{WD}(2$ terms)
correct equation
cao

6

6(a) conservation of energy
$0.5 m u^{2}-m g l \cos 60^{\circ}=0.5 m v^{2}-m g l \cos \theta$
$v^{2}=u^{2}-0.8 g+1.6 g \cos \theta$
$v^{2}=u^{2}-7.84+15.68 \cos \theta$

6(b) N2L towards centre
$T-5 g \cos \theta=\frac{5 v^{2}}{0.8}$
$T=5 g \cos \theta+\frac{5}{0.8}\left(u^{2}-0.8 g+1.6 g \cos \theta\right)$
$T=6.25 u^{2}-5 g+15 g \cos \theta$
$T=6.25 u^{2}-49+147 \cos \theta$

6(c) For complete circles,
$T \geq 0$ when $\theta=180^{\circ},(\cos \theta=-1)$.
M1
$6.25 u^{2} \geq 49+147$
$u^{2} \geq 31.36$
$u \geq 5.6$

6(d) For complete circles,
$v^{2} \geq 0$ when $\theta=180^{\circ}$, $(\cos \theta=-1)$.
$u^{2} \geq 7.84+15.68$
$u^{2} \geq 23.52$
$u \geq 4.85$

M1 KE and PE in equation A1A1
A1 cao

M1 dim correct equation T and $5 g \cos \theta$ opposing

A1
m1 subt v^{2} equivalent expressions
A1 cao, any correct expression

M1
A1 cao

A1 cao

Q
Solution
7.

7(a) Resolve vertically
$T \cos \theta=2 g$
N2L towards centre of motion
$T \sin \theta=2 r \omega^{2}$
$T \sin \theta=2 l \sin \theta \omega^{2}$
$T=2 l \omega^{2}$
$2 l \omega^{2} \cos \theta=2 g$
$\cos \theta=\frac{g}{l \omega^{2}}$

7(b)(i) $T \cos \theta=2 g, T=20 g$
$\cos \theta=\underline{0.1}$

7 (b)(ii) $\cos \theta=0.1$ and $\omega^{2}=3 g, \cos \theta=\frac{g}{l \omega^{2}}$

$$
\begin{aligned}
& 0.1=\frac{g}{l \times 3 g} \\
& l=\frac{10}{3}
\end{aligned}
$$

7(b)(iii)Hooke's Law

$$
T=\frac{\lambda x}{\text { natural length }}
$$

$$
20 g=\frac{\lambda\left(\frac{10}{3}-3\right)}{3}
$$

$$
\lambda=\underline{180 g}=\underline{1764}
$$

B1
Mark Notes

M1
M1
A1 allow m

A1
A1 use of $r=l \sin \theta$

A1 convincing

M1 or $20 g=2 l \times 3 g$

A1 convincing

M1 used,
condone natural
length $=10 / 3$, but x not $10 / 3$ or 3

A1 one of $10 / 3-3$ or 3 correct
A1 cao

$$
\begin{aligned}
7(\mathrm{~b})(\mathrm{iv}) \mathrm{EE} & =\frac{\lambda x^{2}}{2(\text { nat len })} & \text { M1 used } \\
\mathrm{EE} & =\frac{1764}{2 \times 3 \times 3^{2}} & \\
\mathrm{EE} & =\frac{98}{3}=\underline{32.67(\mathrm{~J})} & \text { A1 } \quad \text { cao }
\end{aligned}
$$

