wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - M2 0981-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Q	Solution	Mark	Notes
1(a)(i)	$\mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}$	M1	differentiation attempted Vector required
	$\mathbf{v} = (\sin t + t \cos t)\mathbf{i} + (\cos t - t \sin t)\mathbf{j}$	A1	1
	$(\text{mod } \mathbf{v})^2 = (\sin t + t \cos t)^2 + (\cos t - t \sin t)^2$ $= \sin^2 t + 2t \sin t \cos t + t^2 \cos^2 t$	M1	
	$+\cos^{2}t - 2t\sin t\cos t + t^{2}\sin^{2}t$ $= 1 + t^{2}$	A1	Ft similar expressions
	Speed of $P = \sqrt{1 + t^2}$	A1	cao

1(a)(ii) Momentum vector =
$$m\mathbf{v}$$

= 3[(sint + t cost) \mathbf{i} + (cost - t sint) \mathbf{j}] B1 ft \mathbf{v} (c)
= 3(sint + t cost) \mathbf{i} + 3(cost - t sint) \mathbf{j}

1(b) At
$$t = \frac{\pi}{6}$$
,
 $\mathbf{r} = \frac{\pi}{6} \sin \frac{\pi}{6} \mathbf{i} + \frac{\pi}{6} \cos \frac{\pi}{6} \mathbf{j}$ B1
 $\mathbf{r} = \frac{\pi}{12} \mathbf{i} + \frac{\pi\sqrt{3}}{12} \mathbf{j}$

If perpendicular, $\mathbf{r}.(b\mathbf{i} + \sqrt{3}\mathbf{j}) = 0$ M1

$$\left(\frac{\pi}{12}\mathbf{i} + \frac{\pi\sqrt{3}}{12}\mathbf{j}\right).(b\,\mathbf{i} + \sqrt{3}\,\mathbf{j})$$

$$= \frac{\pi}{12}b + \frac{\pi\sqrt{3}}{12} \times \sqrt{3}$$
M1A1 method correct, no \mathbf{i}, \mathbf{j}

$$\frac{\pi}{12}b + \frac{3\pi}{12} = 0$$

$$b+3 = 0$$

$$b = \underline{-3}$$
A1 cao

2(a)
$$x = \int 4t^3 - 6t + 7 dt$$

 $x = t^4 - 3t^2 + 7t + (C)$
When $t = 0, x = 5$
 $C = 5$
 $x = t^4 - 3t^2 + 7t + 5$
When $t = 2$
 $x = 2^4 - 3 \times 2^2 + 7 \times 2 + 5$
 $x = 16 - 12 + 14 + 5$

$$x = 2 - 3x^{2} + 7x^{2} + 3$$

$$x = 16 - 12 + 14 + 5$$

$$x = 23 (m)$$

2(b)
$$a = \frac{dv}{dt}$$

 $a = 12t^2 - 6$
 $F = ma = 0.8(12t^2 - 6)$
When $t = 3$
 $F = 0.8(12 \times 3^2 - 6)$
 $F = \underline{81.6 (N)}$

M 1	at least one power
	increased.
A 1	
A1	correct integration
m1	initial conditions used
1111	initial conditions used
m1	used
	ubeu
A1	222
AI	cao
M1	at least one power
	decreased.
A1	
M1	Ft a
A1	cao

B1

3(a).
$$T = \frac{P}{v}$$

 $T = \frac{12000}{3} = (4000)$

N2L

Q

$$T - mg \sin \alpha - R = ma$$

4000 - 3000×9.8×0.1 - 460 = 3000a
$$a = 0.2 \text{ (ms}^{-2})$$

$$a = 0$$

$$T - 10v - mg \sin \alpha - R = 0$$

$$\frac{12000}{v} - 10v - 3000 \times 9.8 \times 0.1 - 460 = 0$$

$$\frac{12000}{v} - 10v - 3400 = 0$$

$$12000 - 10v^2 - 3400v = 0$$

$$v^2 + 340v - 1200 = 0$$

$$v = \frac{-340 \pm \sqrt{340^2 + 4 \times 1200}}{2}$$

$$v = \underline{3.49}$$

M1 A1	dimensionally correct 4 terms, allow sin/cos
A1	cao
M1 M1	dimensionally correct 4 terms, allow sin/cos
A1	

m1	dep on both M
----	---------------

A1 cao answer rounding to 3.5.

Mark Notes

4(a)	initial vertical vel of $P = 15\sin 60^{\circ}$ = $\frac{15\sqrt{3}}{2} = 12.99$		
	initial vertical vel of $Q = v \sin 30^\circ$	B1	either correct expression
	use of $s = ut + 0.5gt^2$	M1	
	height of <i>P</i> at time $t = \frac{15\sqrt{3}}{2}t - 0.5gt^2$		
	height of Q at time $t = 0.5vt - 0.5gt^2$	A1	either
	For collision		
	$\frac{15\sqrt{3}}{2}t - 0.5gt^2 = 0.5vt - 0.5gt^2$	m1	
	$v = 15\sqrt{3} = 25.98$	A1	accept 26
4(b)	initial horiz vel of $P = 15\cos 60^{\circ}$ = 7.5 initial horiz vel of $Q = 15\sqrt{3}\cos 30^{\circ}$ = 22.5	B1	either
	For collision,		
	7.5t + 22.5t = 18 t = 0.6 (s)	M1 A1	convincing
4(c)	use of $v=u+at$, $u=\frac{15\sqrt{3}}{2}$ (c), $a=\pm 9.8$, $t=0.6$	M1	
	$v = \frac{15\sqrt{3}}{2} - 9.8 \times 0.6$	A1	Ft u
	v = 7.1		
	speed = $\sqrt{7.1^2 + 7.5^2}$ = <u>10.3(ms⁻¹)</u>	M1 A1	accept candidate's values cao

KE at $t=0 = 0.5 \times 4000 \times 2^2$ KE at $t=0 = 8000$ (J) PE at $t=0 = 0$	M1A	1 <i>v</i> =2 or 5
KE at $t=8 = 0.5 \times 4000 \times 5^2$ KE at $t=8 = 50000$ (J) PE at $t=8 = 4000 \times 9.8 \times h$ PE at $t=8 = 4000 \times 9.8 \times 30 \sin \alpha$ PE at $t=8 = 58800$ (J)	M1 A1	
WD by engine = 43000×8 WD by engine = 344000 (J)	B1	
Work-energy principle 8000 + 344000 = WD + 50000 + 58800 WD = 243200 (J)	M1 A1 A1	KE, PE and WD(2 terms) correct equation cao

6(a)	conservation of energy	M1	KE and PE in equation
	$0.5mu^2 - mgl\cos 60^\circ = 0.5mv^2 - mgl\cos \theta$	A1A1	
	$v^2 = u^2 - 0.8g + 1.6g\cos\theta$	A1	cao
	$v^2 = u^2 - 7.84 + 15.68\cos\theta$		

6(b)	N2L towards centre	M1	dim correct equation T and $5g\cos\theta$ opposing
	$T - 5g\cos\theta = \frac{5v^2}{0.8}$	A1	
	$T = 5g\cos\theta + \frac{5}{0.8}(u^2 - 0.8g + 1.6g\cos\theta)$	m1	subt v^2 equivalent
	$T = 6.25u^2 - 5g + 15g\cos\theta$	A1	expressions cao, any correct expression
	$T = 6.25u^2 - 49 + 147\cos\theta$		expression

 6(c)
 For complete circles,

 $T \ge 0$ when $\theta = 180^{\circ}$, ($\cos\theta = -1$).
 M1

 $6.25u^2 \ge 49 + 147$ $u^2 \ge 31.36$
 $u \ge 5.6$ A1
 cao

6(d)	For complete circles,		
	$v^2 \ge 0$ when $\theta = 180^\circ$, ($\cos\theta = -1$).	M 1	
	$u^2 \ge 7.84 + 15.68$		
	$u^2 \ge 23.52$		
	$u \ge 4.85$	A1	cao

7.

Q

7(a)	Resolve vertically $T\cos\theta = 2g$	M1 A1	allow <i>m</i>
	N2L towards centre of motion $T\sin\theta = 2r\omega^2$	M1	
	$T\sin\theta = 2r\omega$ $T\sin\theta = 2l\sin\theta\omega^2$	A1 A1	use of $r=l \sin \theta$
	$T = 2l\omega^2$		

$$2l \, \omega^2 \cos\theta = 2g$$
$$\cos\theta = \frac{g}{l\omega^2}$$

7(b)(i)
$$T\cos\theta = 2g, T = 20g$$

 $\cos\theta = 0.1$

B1

A1

7(b)(ii) $\cos\theta = 0.1$ and $\omega^2 = 3g$, $\cos\theta = \frac{g}{l\omega^2}$

$$0.1 = \frac{g}{l \times 3g}$$
$$l = \frac{10}{3}$$

7(b)(iii)Hooke's Law

$$T = \frac{\lambda x}{natural \ length}$$

$$20g = \frac{\lambda(\frac{10}{3} - 3)}{3}$$
$$\lambda = \underline{180g} = \underline{1764}$$

M1 or 20g=2lx3g

convincing

- convincing A1
- **M**1 used, condone natural length=10/3, but *x* not10/3or 3
- A1 one of 10/3-3 or 3 correct
- A1 cao

7(b)(iv)EE =
$$\frac{\lambda x^2}{2(nat len)}$$
 M1 used
EE = $\frac{1764}{2 \times 3 \times 3^2}$
EE = $\frac{98}{3} = 32.67$ (J) A1 cao

GCE Maths (M2) MS Summer 2017